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THEORY OF ELASTIC PLATES IN THE REFERENCE STATE

.L. M. HABIP

Department of Engineering Science and Mechanics, University of Florida, Gainesville, Florida, U.S.A.

Abstract-A non-linear plate theory is developed on the basis of three-dimensional theory of elasticity in terms
oj: a reference state. This includes the effects of transverse shear and normal strains, acceleration, material
heterogeneity and anisotropy, and a temperature field. The results are valid for plates of constant thickness
and contain those of certain earlier non-linear plate theories as special cases.

1. INTRODUCTION

WHEN the state of stress in a deformed body is represented by the stress tensor, sij,
measured per unit area of the undeformed body, a new form of the conventional Cauchy's
laws of motion can be obtained For the non-polar case, it follows that sii is a symmetric
tensor. It is noteworthy that this' tensor arises when the stress vector per unit area of the
undeformed body, associated with a surface in the deformed body, is referred to base
vectors in the deformed body. If the same vector be referred to base vectors in the un
deformed body, a corresponding stress tensor, tii, ensues. The historical development
of these aspects of the measure of stress can be traced with the help of references given by
Truesdell and Toupin [la] and Reissner [2]; a summary of the main results has also
been presented by Green and Adkins [3].

In what follows, a non-linear theory of elastic plates "in terms of a reference state"
will be extracted from three-dimensional continuum dynamics in terms of the stress
tensor sii. The non-linear plate equations of motion are first derived by integrating the
version of Cauchy's laws of motion in terms of a reference state across the variable thick
ness of the undeformed plate, This method-which, for the classical theory of elastic
plates, dates back to the last century and has in recent years been employed in developing
plate and shell theories that include the effect of transverse shear deformation-has so far
been applied to the conventional version of Cauchy's laws in terms of stress per unit
area of the deformed body. An exception is due to Koppe [4] who employed an analogous
procedure, based on the related equations involving t ii , in obtaining plate equations of
equilibrium. The effects of eventual simplifying assumptions, however, become easier to
trace, and a consistent system of equations to derive, when a variational procedure is
adopted. Accordingly, the fundamental equations of the non-linear theory of elastic
plates in the reference state are next derived with the help of a variational principle of
three-dimensional elasticity. The resulting equations comprise non-linear strain
displacement relations and constitutive equations as well as mixed boundary conditions
in addition to non-linear plate equations of motion. The theory which includes the effects
of transverse shear and normal strains, acceleration, material heterogeneity and aniso
tropy, and a prescribed steady temperature field, is then shown to yield, under Kirchhoff's
hypothesis, a classical non-linear plate theory. Lastly, complete linearization of our results
leads to the familiar small-deflection theory of plates. The original version of our theory
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is particularly suitable for use in the non-linear analysis of sandwich [5], inflatable and,
indeed, other types of heterogeneous and anisotropic plates, when subjected to mechanical
and thermal loads, so long as the effect of transverse shear deformation is known to be
appreciable.

2. VARIATIONAL PRINCIPLE

The Hellinger-Reissner principle discussed by Truesdell and Toupin [Ib] on the
basis of previous work by Hellinger [6] and Reissner [2] leads to Cauchy's first law of
motion and the mixed boundary conditions of the theory of elasticity in terms of a
reference state within a two point field description. The same has also been illustrated
by Doyle and Ericksen [7al In order to render the present work self-contained, it is our
purpose in this section to reformulate a modified version, after the procedure due to
Hu [8] and Washizu [9,10], of the Hellinger-Reissner principle, in general convected
coordinates, ()i, and using the stress tensor sU. We shall thus obtain, among the resulting
basic equations of non-linear elasticity, the non-linear strain-displacement relations

(1)

where "Iij is the strain tensor defined by Green and Adkins [3]; Vi and Vi are the compo
nents of the displacement vector with respect to base vectors of the undeformed body, a
vertical line denotes covariant differentiation with respect to ()i using the metric tensor
of the undeformed body, and Latin indices take the values 1, 2, 3 and are summed when
repeated.

Let 0 V be the volume of the undeformed body, and oAs and oAv be the two parts
of its total boundary where the stress and displacement vectors are prescribed, respec
tively. Let dVand dA denote the corresponding elements of volume and area, respectively.
Let s! be the components of the stress vector, per unit area of the undeformed body,
referred to base vectors in the undeformed body. In the case when there is a strain
energy, let 1:* denote the strain energy function measured per unit volume of the un
deformed body. Let of i and oFi be, respectively, the components of acceleration with
respect to the undeformed body, and body force per unit mass of the undeformed body
of density Po. Let D indicate variation, and prescribed quantities be denoted by a tilde.
Then, rephrasing the version given by Truesdell and Toupin [Ib], the modified Hellinger
Reissner theorem asserts that the variational principle

(2)
+J' s!v;dA+ r s!(vi-vi)dA],

oAs JoAl.'

where "Iij' sii, V;, and s! are varied independently, is equivalent to Cauchy's first law in
oV, to the stress boundary condition on the part oAs of the boundary, to the displace
ment boundary condition on the remaining part oA v , and to the constitutive equations
and strain displacement relations in 0 V, when both the symmetries of "Iij and sij are used.

To establish this theorem, we carry out the indicated variation in equation (2).
Using Green's transformation and combining the resulting volume and surface integrals,
we obtain



Theory of elastic plates in the reference state 159

Iv <£5Yii[sii_~(~~i: + ~~:)J +£5sii[Yij+!(Vilj+vAi+ tfliV,lj)]

+£5Vi{[Sj'(£5~+Vil,)]lj+Po(oFi~ofi)}> dV+ i [s!-Onjsj'(£5~+vil,)]£5vidA (3)
oA.

+1{[s~-on~'(£5~+vil,)]£5vi+(Vi-i3i)£5s~} dA = 0,
oA v

(4)

(5)

(6)

where £5j is the Kronecker symbol, and Oni stands for the components of the unit normal
with respect to base vectors in the undeformed body. For independent and arbitrary
variations of the indicated quantities, it follows from equation (3)

-in 0 V .. l(a~* a~*)
s'J=- -+-

2 aYii aYji'

Yij = ¥Vilj+Vjli+VrliVrlj),

[sjr(£5~+Vil r)]li+ POoPi = PooP,
-on oAs

(7)

(8)

(9)

(10)

~* = siiy.. - W*lJ

W* = siiy ..-~*
'J '

Equations (4)-(8) constitute a known version of the fundamental equations of the non
linear theory of elasticity in terms of a reference state, as given, for instance, by Green
and Adkins [3], and thus verify the theorem Similar equations have also been discussed,
among others, by Novozhilov [11], Landau and Lifshitz [12], Pearson [13], Prager [14]
and Eringen [15].

The theorem given by Reissner [2] now follows from equation (2) by using the inverse

Yij = ~(aa~j* +aa~;)

of the Legendre transformation

.. l(a~* ap)s'J=- -+-
2 aYii aYji'

provided the Hessian of ~* does not vanish and the strain-displacement relations (5)
are imposed a priori. Thus, W* is the complementary energy function per unit volume
of the undeformed body. For further contributions on this matter, we refer the reader to
Manacorda [16] who presented still another formulation, reproduced by Doyle and
Ericksen [7b], and to Koppe [17] who considered the derivation of related variational
principles of non-linear elasticity.

Clearly, to the various stages of partial linearization in the strain-displacement
relations correspond simplified versions of equation (2) and, hence, of equations (6) and
(7). A recent reformulation of equation (2), in the form of a generalized Hamilton's
principle and in terms of the elongation and mean rotation tensors, has been given by
¥u [18] who also evaluated thus simplified non-linear theories of elasticity earlier avail
able in the literature.
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For later use, we record the following linear version of equation (4)

(11 )

where, for heterogeneous and anisotropic material in the presence of a prescribed steady
temperature field, ew), cijrs are the isothermal stiffnesses and (Xij are strain-temperature
coefficients at constant stress. The following symmetry relations

} (12)

are satisfied. For a medium having elastic symmetry with respect to the surface (}3 = const,
following Green and Zerna [19], equation (11) reduces to

saP = caPo"(YbA-(Xo"e)+caP33(Y33 -(X33e ), }

sa3 = 2Ca3P3(YP3 -(XP3e ), (13)

S33 = C33aP(YaP - (Xape )+C3333
(Y33 - (X33 e ),

where Greek indices take the values 1, 2 and are summed when repeated Within the
conventional representation of stress, relations such as equation (13), but with e = 0,
have been employed by Naghdi [20] for elastic anisotropic shells; expressions equivalent
to equation (11) are given, for instance, by Hearmon [21] and Nowacki [22].

3. NON-LINEAR PLATE THEORY

(a) Preliminaries
When referring to the plate, the original set of general convected coordinates will be

identified with a set of geodesic normal [23] convected coordinates-(}3 = °being the
reference plane-so that the components of the metric tensor of the undeformed plate
space are given by

ga3 = 0, (14)

} (16)

1'33 = OY33,

where aap is the metric tensor of the reference plane of the undeformed plate. The un
deformed plate of variable thickness Ih2 - h11 is then defined as the region bounded by
the two plane faces, (}3 = h 1((}a) and (}3 = h2 ((}"), and the edge boundary which is taken
as a cylindrical surface intersecting the reference plane, oa, along a simple closed curve
oC, and whose generators lie along the normal to the reference plane. A simply con
nected plate will be assumed; no singularities of any kind are supposed to be present.

In order to illustrate our two methods of deriving non-linear plate equations of
motion in terms of a reference state, the displacement components will be taken as

Vi = Ui((}", r) + (}3IjJi((}", r), (15)

where r denotes time. From equations (5) and (15)

Yap = oY"p +()\Y"p + ((}3)2 2Y"p,

where kY"p (k = 0, 1,2), IYa3 (l = 0, 1) and mY33 (m = 0) are known functions of Ui and ljJi.
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For later use, we introduce the following definitions for the stress and couple resultants
per unit length of coordinate curves on oa, and effective extemalloads per unit area of oa.

{pi} = {g;i.}+{p~ -P:t},
c' vIt' ci - Cit

{P:} = [{1 3
l {s3P(bp+ ualp + 03l/Jalp)+ s33l/Ja}]

cn e{ 63 =h
n

(n = 1,2),

t~} = [{~3} {s3a(U3,a +03l/J3,a)+ s33(1 + l/J3n13=hn

(n = 1,2),

(17)

where a comma denotes partial differentiation with respect to the indicated variable.

(b) Non-linear plate equations of motion

Prior to integration with respect to 03
, the three-dimensional equations of motion (6)

are put into the following form

[saP(b~ + ublp + 03l/JbIP)]la + (sa3l/Ja)la + [sP3(b~ + ubl p+ 03l/Jbl p)+ s33l/Jbl3+ POOFb = POOfb, (18)

[SaP(U3,p + 03l/J3,p)]la + [sa3(1 + l/J 3)]la + [sa3(U3,a + 03l/J3,a) + s33(1 + l/J 3)],3 + POoF3 = Poof3,

(19)

[03sap(b~ + ublp + 03l/JbIP)]la + (03sa3l/Jb)la - sa3(b~ +ubla+ 03l/Jbla)- s33l/Jb

+ {03[sa3(b~ + ubla+ 03l/Jbla)+S33l/Jb]1.J + 03 pooFb = 03 poo fb, (20)

[03 sap(U3,p + 03l/J3,p)]la + [03~3(1 + l/J3)]la - sa3(U3,a + 03l/J 3,a) - s33(1 + l/J 3)
+ {e3[~:\U3,a+e3l/J3,a)+s33(1 +l/J3)]b +03pooF3 = 03 pooP, (21)

where equation (15) has been used and equations (20) and (21) follow respectively from
(18) and (19) upon multiplication by 03

• Integrating equations (18)-(21) through the
variable thickness of the undeformed plate, we obtain, using the definitions introduced in
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(26)

(22)

(23)

(24)

(25)

equation (17), the following system of non-linear equations of motion for a plate in terms
of a reference state.

[N"P(<5~ + I1lp)]I" +(M"PI/I6Ip)la +(Q"I/I6)1" +p6 = /6,

(NaPu3,p)la +(MaP 1/13,p)l" +[Q"(1 + 1/13)]la +p3 = /3,
[MaP(e5~+ u6

Ip)]la- Qa(e5~ + 111,,)+ (KaPt/l6Ip)la +(Tal,,_ N 33)I/I6 +C6 = mtS,

(Ma/lu3,p)I"-Q"u3,,,+(KaPI/I3,p)I,,+(T"I,,-N33)(1 +I/I3)+C3 = m 3.

(c) Variational derivation of fundamental equations
In this subsection, we shall use the variational principle established in Section 2 in

order to obtain non-linear strain-displacement relations and constitutive equations as
well as mixed boundary conditions for an elastic plate of variable thickness and the
non-linear equations of motion (22H25) which will not be repeated below. We note that
the use of the variational principle of virtual work in deriving non-linear theories of
shells has been illustrated by Washizu [24].

Performing the integration with respect to 83 in equation (3), the fundamental plate
equations in terms of a reference state follow, for arbitrary and independent variations
of the indicated quantities, through the use of the various relations recorded so far. The
results can be summarized as follows.

Strain-displacement relations

o"lap = 1(u"lp+ upl"+u"I"l1lp+UJ,,,U3,P)'

1"I"p = 1(I/I"lp+t/Ipia +u61"I/I"lp + l/t"lau"I/I +U3,al/l3,P +U3,Pl/l3,a),

2"1a/l = 1(1/161,,1/161/1 +t/I 3,,,1/1 3,P)'

0"1,,3 = 1(1/1" +U3,,, + I/IpuPI" + l/t3U3,a)'

1"1,,3 = 1(I/I3,a+ l/tfJI/IPla+ 1/1 3 1/13,a),

0"133 = ![21/13+t/I"I/Ia+(I/I3?J.

(27)

(28)

where

J
h2

I: = I:* d()3
h,

is the strain energy function per unit area of the undeformed reference plane. In order
to obtain linear constitutive equations for a heterogeneous, anisotropic elastic plate
subjected to a prescribed steady temperature field, we take, by generalization from
Boley and Weiner (25],

(29)



Theory of elastic plates in the reference state

where sli is given by equation (13~ The corresponding constitutive equations are

N~fJ - nafJ6)' nafJ6)' nafJ6A nafJ 33 o.~fJ
- OD OY6A + ID IY6). +2D 2Y6A +OD OY33 - o~ ,

M~fJ = l]J'fJ6)' OY6A + 2Bar.fJ6AIY6A + 3]J'fJ
6A

2Y6). + l]J'fJ33 OY33 - I ear.fJ ,

Kar. fJ = 2]J'fJ
6

)' OY6A + 3]J'fJ
6A

IY6A + 4]J'fJ
U

2Y6A + 2]J'fJ33 OY33 - 2e1J1.fJ

Qar. _ 2( na3fJ3 + na3fJ3 o.ar.3)
- OD OYfJ3 III IYfJ3-0~'

T ar. - 2( na3fJ3 + na3fJ3 o.ar.3)
- III OYfJ3 2ll IYfJ3 -l~ ,

N 33 = ]J'fJ
33

Y + ]J'fJ 33 Y + ]J'fJ 33 Y + B 3333 Y _ 0 33
o 0 ar.fJ I I ar.fJ 2 2 ar.fJ 0 33 u ,

(n = 0, 1, ... ,4),

(n = 0,1,2),

(n = 0, 1,2),

(n = 0, 1,2),

(n = 0, 1),
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(30)

(31)

(32)

as thermal stress and couple resultants per unit length of coordinate curves on oa. On
account of equation (12), obvious symmetry relations hold for the quantities defined in
(31)-(32).

Mixed boundary conditions. Some of the terms in the surface integrals in equation (3)
are evaluated as follows. For that part of the boundary where the stress vector is pre
scribed, i.e. the faces of the plate and part of the edge,

r ~ bvldA = i (sbu;+llbt/JI)<U+ r (P1bul+C~bt/Jl)dA+ r {Flbul+C1Ibt/Jl)dA, (33)JoA.. QC. JOQ2 JOlll

where
(34)

dI is an element of arc length along oC, oc. is that part of oC where the stress vector is
prescribed, and oan (n = 1,2) denotes the faces of the plate. Furthermore, assuming the
part where the displacement vector is prescribed to be a portion of the edge of the plate
only,

(35)
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(36)

and OCv is that part of oC where the displacement vector is prescribed. The resulting stress
and displacement boundary conditions are respectively,

~along OCs

sl1 = sl1 = onp[NP~(b:l+z.fI~)+MP~1/I111~+QP1/I11],

f' = til = onp[MP~(b:l+z.fI~)+KP~1/I111~+ TP1/I11],

S3 = S3 = onp[NPl1u3•I1 +MPI11/13.I1+QP(1 +1/13)]'

13 = t3 = oUp[MPI1U3 .I1 +KPI11/13.11+ TP(l +1/13)]'

and on oan (n = 1,2)

~along OCv

-i i
Pn = P.,

ii; = U;,

""i i
C n = en,

..[J;= 1/1;.

(38)

(39)

4. SPECIAL CASES

In this section, we present a few special versions of our results including comparisons
with certain theories previously available in the literature. A comprehensive and detailed
review of earlier works on the non-linear analysis of elastic plates, with special emphasis
on approximate solutions of the basic equations, is beyond the scope of this paper and
will be dealt with in a forthcoming memoir. In the meantime, a related survey by
Vol'mir [26] should be of considerable interest.

We begin by noting that our results [equations (22)-(25) and (37)] reduce to those of
Herrmann and Armelllikas [27], derived by Hamilton's principle, if all terms involving
Til, K I1P, N 33 and 1/13 are dropped. The variational principle that we have. used has the
advantage of yielding non-linear strain-displacement and constitutive equations as well
as displacement boundary conditions in addition to the non-linear plate equations of
motion and stress boundary conditions.
Taking

1/111 = -U3.p(D~+uPII1)'

1/13 = -tU3.I1U3,",

we obtain, approximately, the classical case,

} (40)

YI13 = Y33 ~ 0 (41)

of vanishing transverse shear and normal strains. Accordingly, equations (22)-(25)
reduce to

[NI1~(Dg +uPI~)]II1-[MI1~(U3.P)I~]II1-(MI1~II1U3.P)I~+ pP -(c~u3.P)I~ = /P - (m~u3.P)I~,

MI1PII1P + (NIlPU3 •P)111 + (MI1Pu~lp)ll1~ -(MI1~ll1uPI~)lp - [KI1P(U3.~)lp]ll1~ + p3+ ~111

-(cl1uPII1 )lp + (C 3U3.11)111 = /3 +ml1ll1-(ml1uPII1)lp + (m 3u3.11 )111'

(42)

(43)
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(44)

} (45)

after elimination of Q", T" and N 33 which takes place automatically when the variational
principle is used. The rest of the field equations corresponding to this special case can be
obtained in a similar fashion. Dropping terms involving K"P, m i and c3 in equations
(42) and (43), we recover the equations of a classical non-linear plate theory due to Herr
mann and Armemlkas [27].

That our results can be specialized to yield the classical von Karman [28] non-linear
plate equations has recently been illustrated by Ebcioglu [29].

Finally, complete linearization leads to

N"PI,,+pP =/fI,

M"fI\,,_QP+cfl =mP,

Q"I,,+p3 =/3.

Equations (45) are known to govern the small dynamic flexure of plates, keeping in
mind that in the linear theory, as remarked by Eringen [151 the difference between the
versions of Cauchy's laws expressed in the reference state and those in spatial form
disappears.

5. CONCLUSION

The original version of our non-linear theory has so far been shown to include, as
special cases, a classical non-linear theory of thin elastic plates as well as the more
familiar von Karman non-linear plate theory [29]. Further reduction for the non-linear
analysis of thin, heterogeneous and anisotropic membranes subjected to mechanical and
thermal loads is possible. The formulation being in tensor notation the results can readily
be expressed in any particular coordinate system most suitable for the geometrical con
figuration at hand. Moreover, our two methods of derivation are not restricted to the
special displacement assumption equation (15) adopted here for the main purpose of
eventual correlation of our results with those known from earlier non-linear plate
theories. In fact, except for this approximation, the results [equations (22)-(25), (27) and
(37)-(39)] have been obtained through an exact derivation from three-dimensional
continuum dynamics in terms of a reference state using the stress vector per unit area of
the undeformed body. This latter point is of importance for the proper interpretation of
various quantities that appear in non-linear theories of plates and shells.
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Resume-Une theorie non-lineaire de plaques est develo1?¢e en se basant sur une thi:orie it trois dimensions
d'elasticiti: en termes d'unetat de reference. Ceci comprend les effets d'un cisaillement transversal et d'efforts
normaux, de I'acceleration, de I'anisotropie et de I'hi:terogeneite du materiel et d'un champs de temperature.
Les resultats s'appliquent aux plaques d'epaisseur constante et comprennent ceux de certaines theories pr6ce
dentes non-lineaires en tant que cas spi:ciaux.

Zusammenf'alllUllg- Eine nicht-lineare Plattentheorie ist entwickelt auf der Grundlage von drei-dimensionaler
Elastizitiitstheorie mit Hilfe eines Referenzzustandes. Sie schliesst die Wirkung der Schiebung, normaler
Verzerrung, Beschleunigung, Ungleichartigkeit des Materials und Anisotropie, und eines Temperaturfeldes
ein. Die Ergebnisse gelten flir Platten unverlinderlicher Dicke und enthalten Ergebnisse von gewissen friiheren
nicht-linearen Plattentheorien als besondere Flille.

A6c:TpaK'I'"---"TeopHlI HenHHeltHolt WIaCTHHbI pa3BHJlaCb Ha OCHOBe TpexMepHoit TeopHH ynpyrOCTJf B

npHcy.n;cllBIUI Ha'laJIl,HOrO COCTOllHHlI. 3TO BICJlIO'IaeT J4MlJen nonepe'lHOrO c,lJ;BHI'a H HopManbHble
,lIelj!opMallHH, yCKopeHHe, reTeporeHHOCTb MarepHaJIa H aHH30TponHIO H none TeMnepaTypbI. Pe3ynbTaTbI
rO):\llTClI):\JIli WIaCTHH nepeMeHHolt TonlllHHbI H CO,llepllCaT HeKoTopble paHHHe TeopHH HenHHeitHbIx nnaCTHH,

KaK oco6ble cny'laH.


